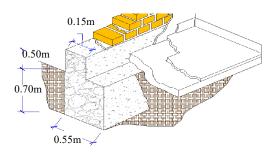
MEMORIA DE CÁLCULO ESTRUCTURAL

DISEÑO DE CIMENTACIÓN DE CERCO PERIMÉTRICO


Datos del Terreno

Peso Específico:	y =	1790.00	kg/m3
Angulo de Fricción:	$\boldsymbol{\phi} =$	30.00	
Coeficiente de Fricción:	ya =	0.50	
Capacidad Portante:	yc =	1.81	kg/cm2

TABLA DE REFERENCIA			
TERRENO DE CIMENTACION		Coef de fricc	
		para desplaz	
	Roca dura uniforme con pocas grietas	0.70	
Rocoso	Roca dura unif. con muchas fisuras	0.70	
	Roca blanda	0.70	
Estrato	Densa	0.60	
de grava	No Densa	0.60	
Terreno	Densa	0.60	
Arenoso	Media	0.50	
Terreno	Muy dura	0.50	
Cohesivo	Dura	0.45	
	Media	0.45	

Datos Proyectados del Cimiento

Peralte del sobrecimiento	hsc =	0.50	m
Ancho del sobrecimiento	bsc =	0.15	m
Peralte del cimiento	hc =	0.70	m
Ancho del cimiento	bc =	0.55	m
Profundidad del cimiento	hf =	1.00	m
Altura del relleno	hr =	0.20	m
Altura sobresaliente del sobrecimiento		0.30	m

hv bv hr hsc hr hc bc

01. VERIFICACION DE LA ESTABILIDAD DEL CERCO PERIMÉTRICO

01.1 VERIFICACIÓN DE LA ESTABILIDAD POR DESLIZAMIENTO

01.1.1 Cálculo del coeficiente de empuje activo y pasivo por la teoría de Rankine

$$K_a = \operatorname{tg}\left(45 - \frac{\varphi}{2}\right)^2 = 0.333333$$

$$K_p = \text{tg}\left(45 + \frac{\varphi}{2}\right)^2 = 3.00$$

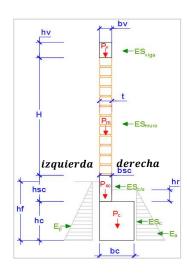
Cálculo de los empujes del suelo (lado izquierdo)

Empuje activo

$$E_a = \frac{1}{2} * K_a * y * (hc + hr)^2 * B =$$
 241.65 **kg**

Empuje pasivo

$$E_p = \frac{1}{2} * K_p * y * hf^2 * B =$$
 2685.00 kg


Cálculo de los empujes del suelo (lado derecho)

Empuje activo

$$E_a = \frac{1}{2} * K_a * y * hf^2 * B =$$
 298.33 kg

Empuje pasivo

$$E_p = \frac{1}{2} * K_p * y * (hc + hr)^2 * B = 2174.85 \text{ kg}$$

01.1.2 Metrado de cargas

01.1.3 Empuje Sísmico de la estructura

$$Esviga = 0.8 \times 0.35 \times 1 \times 0.6 \times 72 =$$
 12.096 kg $Esmuro = 0.8 \times 0.35 \times 1 \times 0.6 \times 675 =$ 113.4 kg $ESs/c = 0.8 \times 0.35 \times 1 \times 0.6 \times 172.5 =$ 28.98 kg $Esc = 0.8 \times 0.35 \times 1 \times 0.6 \times 885.5 =$ 148.764 kg

01.1.4 Fuerza resistente

$$Fr = 1948.2 \times 0.5 + 2685 = 3659.10 \text{ kg}$$

01.1.5 Fuerza actuante

$$F_a = ES_{viga} + ES_{muro} + ES_{s/c} + ES_c + E_a = 544.89 \text{ kg}$$

01.1.5 Verificación por deslizamiento

$$F.S.D = \frac{3659.10}{544.89} = 6.7153$$

$$F.S.D > 1.50$$

$$6.72 > 1.50$$

La seccion es adecuada

01.2 VERIFICACIÓN POR VOLTEO

01.2.1 Momento actuante por las fuerzas del extremo izquierdo

Elemento	Es (Kg)	d (m)	M (Kg.m)	
Viga de confinamiento	12.10	3.80	45.96	kg.m
muro de albañileria	113.40	2.45	277.83	kg.m
sobrecimiento	28.98	0.95	27.53	kg.m
cimiento	148.76	0.35	52.07	kg.m
Empuje activo	241.65	0.30	72.50	kg.m
Momento actuante		$M_v =$	475.89	kg.m

Momento resistente

$$M_r = P_{cimiento} * \frac{bc}{2} + \left(P_{viga} + P_{muro} + P_{s/cimiento}\right) * \frac{t}{2} + P_{relleno} * \left(bc - \left(\frac{bc - bsc}{2}\right)\right) + E_p * \frac{hf}{3}$$

$$M_r = 1257.595 \text{ kg.m}$$

Verificación de la estabilidad por volteo lado izquierdo

$$F.S.V = 1257.595 = 2.64263$$
 475.89
 $F.S.V > 2.00$
 $2.64 > 2.00$

La seccion es adecuada

01.2.1 Momento actuante por las fuerzas del extremo lado derecho

Elemento	Es (Kg)	d (m)	M (Kg.m)	
Viga de confinamiento	12.10	3.80	45.96	kg.m
muro de albañileria	113.40	2.45	277.83	kg.m
sobrecimiento	28.98	0.95	27.53	kg.m
cimiento	148.76	0.35	52.07	kg.m
Empuje activo	298.33	0.33	99.44	kg.m
Momento actuante		$M_v =$	502.84	kg.m

Momento resistente

$$M_r = P_{cimiento} * \frac{bc}{2} + \left(P_{viga} + P_{muro} + P_{s/cimiento}\right) * \left(bc - \frac{t}{2}\right) + P_{relleno} * \left(\frac{bc - bsc}{2}\right) + E_p * \left(\frac{hc}{3}\right)$$

$$M_r = 1361.37 \text{ kg.m}$$

Verificación por Volteo lado derecho

$$F.S.V = \frac{1361.37}{502.84} = 2.7074$$

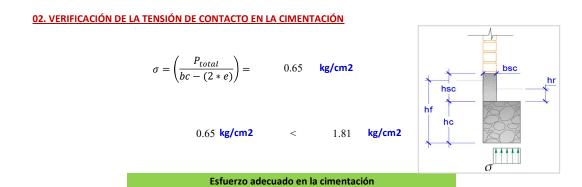
$$F.S.V > 2.00$$
2.71 > 2.00

La seccion es adecuada

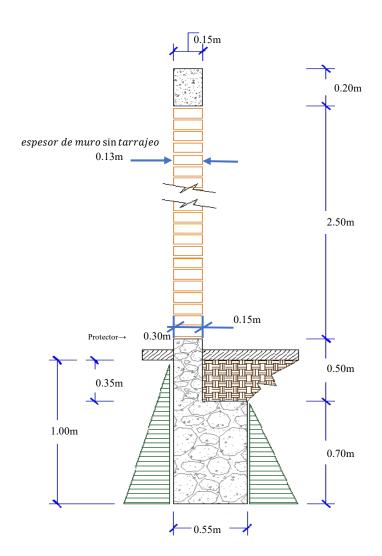
02. VERIFICACIÓN DE LA CAPACIDAD PORTANTE DEL SUELO

Excentricidad

$$Mv = 475.89 \text{ kg.m}$$
 $Mr = 1257.595 \text{ kg.m}$
 $Ptotal = 1948.20 \text{ kg}$


$$X_o = \left(\frac{M_r - M_v}{P_{total}}\right) = 0.40 \quad \mathbf{m}$$

$$e = \left| X_o - \frac{bc}{2} \right| = 0.13 \quad \mathbf{m}$$

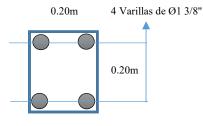

Excentricidad máxima

$$e_{max} = \frac{bc}{3} = 0.18$$
 m

La excentricidad es adecuada

ESQUEMA FINAL DEL CERCO PERIMÉTRICO CORTE A-A

DETALLES ESTRUCTURALES DEL CERCO PERIMÉTRICO


DETALLE DE ARMADURA EN MUROS

DETALLE DE VIGAS SOLERA

0.15m 4 Varillas de Ø1 3/8" Acero de Ø6mm, 1@5cm,4@10cm,res to @25cm

DETALLE DE COLUMNETA

Acero de Ø6mm, 1@5cm,4@10cm,r esto @25cm. Adicionalmente se agregará 2 estribos en la unión soleracolumna